
Class of exactly solvable SO(n) symmetric spin chains with matrix product ground states

Hong-Hao Tu and Guang-Ming Zhang*
Department of Physics, Tsinghua University, Beijing 100084, China

Tao Xiang
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

and Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
�Received 13 June 2008; published 8 September 2008�

We introduce a class of exactly solvable SO�n� symmetric Hamiltonians with matrix product ground states.
For an odd n�3 case, the ground state is a translational invariant Haldane gap spin liquid state; while for an
even n�4 case, the ground state is a spontaneously dimerized state with twofold degeneracy. In the matrix
product ground states for both cases, we identify a hidden antiferromagnetic order, which is characterized by
nonlocal string order parameters. The ground-state phase diagram of a generalized SO�n� symmetric bilinear-
biquadratic model is discussed.
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I. INTRODUCTION

One-dimensional quantum Heisenberg antiferromagnets
have a long history and show many fascinating properties.
Since the Mermin-Wagner-Coleman theorem1,2 forbids a
continuous symmetry breaking in one dimension, no classi-
cal Néel order can survive even in zero temperature. The
rigorous solutions on particular models provide essential in-
sights to understand the properties of these quantum spin
liquid states. For instance, the spin-1/2 antiferromagnetic
Heisenberg chain has a Bethe-ansatz solution,3,4 which yields
a unique spin singlet ground state, gapless spin-1/2 excita-
tions, and power-law decay spin correlations. Meanwhile,
additional next-nearest-neighbor interactions can frustrate
the nearest-neighbor antiferromagnetic correlations. The
Majumdar-Ghosh model5 is such an exactly solvable ex-
ample, which has a twofold-degenerate dimerized ground
state, a finite-energy gap, and extremely short spin correla-
tions.

Toward the quantum integer-spin models, Haldane gave a
striking prediction that an excitation gap occurs between the
ground state and the excited states.6 Although Haldane’s ar-
gument is based on a semiclassical large-S expansion, it was
later verified by numerical studies for lower-S cases.7–9 Re-
markably, Affleck, Kennedy, Lieb, and Tasaki �AKLT� found
a family of integer-spin chain Hamiltonians with exact mas-
sive ground states, which are called valence bond solid
�VBS� states.10 The VBS states preserve spin rotational sym-
metry and exhibit exponentially decay spin correlations and
gapped excitations, thus, share the key features of Haldane
gap spin liquid states for the quantum integer-spin Heisen-
berg antiferromagnets. Although no true long-range order ex-
ists, den Nijs and Rommelse11 observed a hidden antiferro-
magnetic order in the S=1 VBS state and introduced a set of
nonlocal string order parameters to provide a faithful quan-
tification of the S=1 Haldane phase. The string order in S
=1 VBS state, Haldane gap, and the fourfold degeneracy in
an open chain can be understood by a hidden Z2�Z2 sym-
metry breaking.12–14 However, a nonlocal string order param-
eter that reflects correctly the hidden ZS+1�ZS+1 symmetry

of the higher-S VBS states remains an open problem.13–16

Beside the studies on SU�2�-symmetric spin chains, quan-
tum spin systems with higher symmetry also attract much
attention. For instance, the Bethe-ansatz method for SU�2�
Heisenberg chains can be generalized to models with SU�n�
symmetry.17 It has been argued that such an
SU�4�-symmetric model can be achieved in electronic sys-
tems with twofold orbital degeneracy at quarter filling.18

Meanwhile, Affleck et al.19 first discussed the extension of
VBS states to SU�2n�-invariant extended VBS states, which
break lattice translational symmetry and charge-conjugation
symmetry but remain invariant under the combined operation
of these two symmetries. Furthermore, Greiter et al.20 stud-
ied the SU�n� spin chains with exact valence bond solid
ground states. Along with the rise of cold atomic physics in
optical lattices, Chen et al.21 constructed an SU�4�
Majumdar-Ghosh model with exact plaquette ground states
by using spin-3/2 fermions. Very recently, Arovas22 explored
a family of novel SU�n� simplex solid states, which are natu-
ral generalizations of SU�2� VBS states of AKLT models.
Beside these models with SU�n� symmetry, Schuricht and
Rachel23 considered Sp�2n� VBS states and their parent
Hamiltonians.

In this paper, we will introduce a class of
SO�n�-symmetric Hamiltonians with matrix product states as
their exact ground states. However, these SO�n� symmetric
spin chains show a different even-odd effect. For an odd n
=2l+1, a periodic chain has a unique ground state. All these
SO�2l+1� matrix product states have a hidden antiferromag-
netic order, which is characterized by string order param-
eters. The nonlocal unitary transformations are designed to
explicitly reveal a hidden �Z2�Z2�l symmetry. The breaking
of this symmetry is responsible for the Haldane gap, nonva-
nishing string order parameters, and 4l-fold degeneracy in an
open chain. However, for an even n=2l, a periodic chain has
a twofold dimerized ground state, which breaks translational
symmetry. Nevertheless, these SO�2l� matrix product states
also contain a hidden antiferromagnetic order. Finally, the
ground-state phase diagram of a generalized SO�n� symmet-
ric bilinear-biquadratic model is obtained.
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This paper is organized as follows. In Sec. II, the SO�n�
algebra and the exactly solvable SO�n� symmetric models
will be introduced. In Sec. III, the exact matrix product
ground state of the SO�n� model with n=2l+1 will be stud-
ied, in particular, with the examples of n=3 and 5. The hid-
den order in all these SO�2l+1� matrix product states and the
corresponding hidden symmetry are identified. Section IV is
devoted to an analysis of the SO�n� model with n=2l, which
has a dimerized ground-state breaking lattice translational
symmetry. In Sec. V, a generalized SO�n� symmetric
bilinear-biquadratic model is introduced and their ground-
state properties are discussed in detail. A conclusion is pre-
sented in Sec. VI.

II. MODEL HAMILTONIAN

Let us begin with a one-dimensional SO�n� chain of N
lattice sites �N even�. On each site, the local Hilbert space Cn

contains n states �na��1�a�n�, which can be rotated within
the SO�n� space via the following vector relations:

Lab�nc� = i�bc�na� − i�ac�nb� , �1�

where Lab �a�b� are the n�n−1� /2 generators of the SO�n�
Lie algebra. The vector relations constitute the
n-dimensional representation of SO�n� algebra and the fol-
lowing commutation relations hold:24

�Lab,Lcd� = i��adLbc + �bcL
ad − �acL

bd − �bdLac� . �2�

According to the Lie algebra, the tensor product of two
SO�n� vectors can be decomposed as a direct sum of an
SO�n� singlet with a dimension 1, an antisymmetric SO�n�
tensor with a dimension n�n−1� /2, and a symmetric SO�n�
tensor with a dimension �n+2��n−1� /2, i.e.,

n � n = 1 � n�n − 1�/2 � �n + 2��n − 1�/2, �3�

where the number above each underline is the dimension of
the corresponding irreducible representation. For n=3, we
recover the well-known Clebsch-Gordan decomposition 3
� 3=1 � 3 � 5 of two spin-1 representations. According to
the SO�n� decomposition scheme �3�, the wave functions in
each irreducible representation channel can be obtained ex-
plicitly. The maximally entangled SO�n� singlet wave func-
tion is written as 1 /�n�a=1

n �na�i�na� j and the wave functions
of the antisymmetric channel are expressed as

1
�2

��na�i�nb� j − �nb�i�na� j� . �4�

Finally, the symmetric channel contains n�n−1� /2 states
with the wave functions

1
�2

��na�i�nb� j + �nb�i�na� j� , �5�

and the rest of n−1 states with the wave functions

1
�2

��na�i�na� j − �nb�i�nb� j� . �6�

For the three SO�n� channels given in Eq. �3�, the bond
Casimir charge �a�b�Li

ab+Lj
ab�2 for two adjacent sites takes

the values 0, 2n−4, and 2n, respectively. Together with the
single-site Casimir charge �a�b�Li

ab�2=n−1, one can write
the SO�n� symmetric bilinear interaction term as a polyno-
mial of bond projection operators,

�
a�b

Li
abLj

ab = �1 − n�P1�i, j� − Pn�n − 1�/2�i, j�

+ P�n + 2��n − 1�/2�i, j� , �7�

where the bond projectors P1�i , j�, Pn�n − 1� / 2�i , j�, and
P�n + 2��n − 1� / 2�i , j� project the states of two adjacent sites i and
j onto the three SO�n� channels in Eq. �3�, respectively. Us-
ing the property of projection operators, we square Eq. �7�
and obtain the SO�n� symmetric biquadratic interaction term
as

	�
a�b

Li
abLj

ab
2
= �n − 1�2P1�i, j� + Pn�n − 1�/2�i, j�

+ P�n + 2��n − 1�/2�i, j� . �8�

Combined with the completeness relation of the projectors,

P1�i, j� + Pn�n − 1�/2�i, j� + P�n + 2��n − 1�/2�i, j� = 1, �9�

we can express the bond projection operators with the SO�n�
generators as

�
P1�i, j�

Pn�n − 1�/2�i, j�

P�n + 2��n − 1�/2�i, j� � = �
−1

n�n−2� 0 1
n�n−2�

n−1
2�n−2�

−1
2

−1
2�n−2�

n−1
2n

1
2

1
2n

�
��

1

�
a�b

Li
abLj

ab

��
a�b

Li
abLj

ab�2� . �10�

Now we define our model Hamiltonian as

HSO�n� = �
i

P�n + 2��n − 1�/2�i,i + 1� , �11�

which is a bilinear-biquadratic Hamiltonian in terms of the
SO�n� generators according to Eq. �10�. This model has exact
matrix product ground states, which will be extensively stud-
ied below. Although the exact excited states are not known,
we argue that there is a finite-energy gap above the ground
states. For a projector Hamiltonian such as Eq. �11�, this
argument can be proved rigorously using a method proposed
by Knabe,25 who found that the lower bounds of energy gaps
of infinite systems can be obtained by diagonalizing finite-
size systems.

In Secs. III and IV, we will discuss odd n=2l+1 and even
n=2l cases separately because the nature of the matrix prod-
uct ground state depends on the parity of n. Mathematically
speaking, the SO�2l+1� and SO�2l� algebras are quite differ-
ent. According to the Cartan classification scheme,24 the
SO�2l+1� algebra belongs to Bl type, while the SO�2l� alge-
bra are Dl type.

TU, ZHANG, AND XIANG PHYSICAL REVIEW B 78, 094404 �2008�

094404-2



III. ODD-n CASE

Let us assume n=2l+1, where l is an integer �l�1�. To
achieve the exact ground state of model Hamiltonian �11�,
one has to resort to a fascinating property of SO�n� algebra—
the spinor representation. An elegant way to construct the
spinor representation of SO�2l+1� algebra is to introduce
�2l+1� gamma matrices satisfying the Clifford algebra
�a ,�b�=2�ab. Then an irreducible spinor representation of
SO�2l+1� is immediately constructed by �ab= ��a ,�b� /2i.
The product of �a and �b can be expressed as �a�b=�ab
+ i�ab. For each lattice site j, if the following matrix state is
introduced:

gj = �
a=1

2l+1

�a�na� j , �12�

then the bond product of gj at any two neighboring sites
gjgj+1 is given by

gjgj+1 = i�
a�b

�ab��na� j�nb� j+1 − �nb� j�na� j+1� + �
a

�na� j�na� j+1,

�13�

where the first two terms belong to the antisymmetric chan-
nel in Eq. �3� and the latter term is the SO�2l+1� singlet.
Since P�n + 2��n − 1� / 2�j , j+1� performs the projection onto the
states of the symmetric �n+2��n−1� /2 channel, the matrix
product state defined by

��� = Tr�g1g2 . . . gN�

= �
a1. . .aN

Tr��a1�a2 . . . �aN��na1na2 . . . naN� , �14�

is always the zero-energy ground state of the Hamiltonian
�11� in a periodic boundary condition. This state preserves
SO�2l+1� symmetry and lattice translational symmetry. For
an open chain, there are totally 4l-degenerate ground states,
which can be distinguished by their edge states.

To compute the correlation functions in the matrix prod-
uct ground state, we set up a transfer-matrix method26 by
introducing

GA = �
ab

�na�A�nb���̄a
� �b� , �15�

where A is an operator acting on a single site and �̄a denotes
the complex conjugate of �a. Specifically, the transfer matrix

G is written as G=�a�̄a � �a. Then a two-point correlation
function in thermodynamic limit can be written as

�Li
abLj

ab� = lim
N→�

Tr��G�N−j+i−1Gab�G� j−i−1Gab�
Tr�G�N , �16�

where Gab= i��̄a � �b− �̄b � �a�. In a long distant limit, the
two-point correlation functions of SO�2l+1� generators de-
cay exponentially as

�Li
abLj

ab� � exp	−
�j − i�

	

 , �17�

with the correlation length 	=1 / ln� 2l+1
2l−3 �.

Here we note that the SO�2l+1� symmetric model has a
deep relation with the quantum integer-spin chains. On each
lattice site, the �2l+1� vectors of SO�2l+1� can be con-
structed from the S= l quantum spin states. In the SU�2� spin
language, the last two channels in Eq. �3� for odd n=2l+1
correspond to the total bond spin S=1,3 , . . . ,2l−1 and S
=2,4 , . . . ,2l states, respectively. In other words, the SO�2l
+1� bond projection operators can be expressed using the
spin projection operators PS=m as

P2l2 + l�i, j� = �
m=1

l

PS=2m−1�i, j� , �18�

P2l2 + 3l�i, j� = �
m=1

l

PS=2m�i, j� . �19�

Thus, the role of P2l2 + 3l�i , j� is to project onto nonzero even
total spin states. Based on this property, we can further show
that the matrix product wave function �14� is also the ground
state of the following quantum integer-spin Hamiltonian:

HSU�2� = �
i

�
m=1

l

JmPS=2m�i,i + 1� , �20�

with all Jm
0. This model can be written as a polynomial of
nearest-neighbor spin-exchange interactions Si ·Si+1 up to 2l
powers and is therefore SU�2� invariant. However, the
ground state �14� possesses an emergent SO�2l+1� symme-
try.

It is interesting to compare HSU�2� with the AKLT model
of valence bond solid proposed by Affleck et al.,10,27

HAKLT = �
i

�
m=l+1

2l

KmPS=m�i,i + 1� , �21�

with all Km
0. The ground state of HAKLT is also a matrix
product state similar to Eq. �14�, but the local g matrix for
AKLT model is now a �S+1�� �S+1�= �l+1�� �l+1�
matrix.14 When l=1, both models HSO�n� and HSU�2� become
exactly the same as the S=1 AKLT model HAKLT, whose
ground state is the celebrated S=1 VBS state. When l
1,
we emphasis that HSU�2� and HAKLT differ from each other. In
Secs. III B and III C, we will show that their matrix product
ground states have very different hidden structures and be-
long to different topological phases, although they both be-
long to the Haldane liquid states.

A. SO(3) matrix product state: S=1 VBS

In order to investigate the property of the SO�2l+1� ma-
trix product state, we briefly review the SO�3�-symmetric S
=1 VBS state as a warm up. In this case, the SO�3� vectors
can be represented by the S=1 spin states,

�n1� =
1
�2

��− 1� − �1��, �n2� =
i

�2
��1� + �− 1��, �n3� = �0�

�22�

and the SO�3� generators are defined by spin-1 operators as
L12=−Sz, L13=Sy, and L23=−Sx. Moreover, the Clifford alge-

CLASS OF EXACTLY SOLVABLE SO�n� SYMMETRIC… PHYSICAL REVIEW B 78, 094404 �2008�

094404-3



bra is satisfied by the Pauli matrices as �a ,�b�=2�ab. Ac-
cording to Eq. �12�, the local g matrix can be written as

gj = 	 �0� j �2�− 1� j

− �2�1� j − �0� j

 , �23�

which generates the matrix form of the S=1 VBS state. Al-
though the two-point spin-correlation functions in this state
decay exponentially as shown in Eq. �17�, it has been ob-
served that the upper and down spins lie alternately along the
lattice, sandwiched by arbitrary number of nonpolarized spin
states. This hidden diluted antiferromagnetic order can be
characterized by a nonlocal string order parameter first pro-
posed by den Nijs and Rommelse,11

O� = lim
�j−i�→�

�Si
��

r=i

j−1

exp�iSr
��Sj

�� =
4

9
, �24�

where �=x, y, or z.
On the other hand, the S=1 VBS states on a finite open

chain have two nearly free S=1 /2 edge degrees of freedom
at the end of the chain and are thus fourfold degenerate. Both
the hidden string order and the degeneracy in an open chain
can be understood as natural consequences of a hidden Z2
�Z2 symmetry breaking. To manifest the hidden symmetry,
the key is a nonlocal unitary transformation defined by12,13

U = �
j�i

exp�iSj
zSi

x� . �25�

In the standard Sz representation, exp�iSx� flips �m� to
�−m� �m= �1,0� and multiplies the state with a phase factor
�−1�. The physical meaning of the unitary transformation U
can be explained as follows. For a given spin configuration
on a finite open chain, all �0� are left alone and we look for
the nonzero spins from the left to the right. Suppose there is
a nonzero spin at site i, we count the number of �1� and
�−1� on the sites to the left of site i. If the number is even, we
left the spin at site i unchanged. If the number is odd, we flip
the i-site spin. Finally, an additional phase factor �−1� may
be taken into account depending on the total site number and
each spin configuration. An example of the unitary transfor-
mation U on a typical configuration of the spin-1 VBS state
is shown in Fig. 1.

When applying the Kennedy-Tasaki unitary transforma-
tion to the Hamiltonian, the SO�3�-symmetric AKLT model
is transformed to a model with a discrete Z2�Z2

symmetry,12,13 and two of the den Nijs–Rommelse string or-
der parameters become the usual two-point spin-correlation
functions. Thus, the nonvanishing string order parameter
measures the hidden Z2�Z2 symmetry breaking of the origi-
nal model. The breaking of this hidden discrete symmetry
leads to the opening of the Haldane gap, the hidden antifer-
romagnetic order, and the fourfold degeneracy in an open
chain and thus provides a unified explanation of the exotic
features in S=1 VBS states.

B. SO(5) matrix product state: A projected valence bond solid

The next example is the SO�5�-symmetric matrix product
state with l=2. Actually, Scalapino et al.28 proposed this state
to describe the SO�5� “superspin” phase on a ladder system
of interacting electrons. Here, it is convenient to introduce
the SO�5� vectors by means of the S=2 states,

�n1� =
i

�2
��− 2� − �2��, �n2� =

1
�2

��2� + �− 2�� ,

�n3� =
1
�2

��− 1� − �1��, �n4� =
i

�2
��1� + �− 1�� ,

�n5� = �0� . �26�

Moreover, we define the SO�5� gamma matrices as

�1 = �2
� �0, �2 = �1

� �0, �3 = �3
� �1,

�4 = �3
� �2, �5 = �3

� �3. �27�

Then the local g matrix can be written as

gj =�
�0� j �2�− 1� j

�2�− 2� j 0

− �2�1� j − �0� j 0 �2�− 2� j

�2�2� j 0 − �0� j − �2�− 1� j

0 �2�2� j
�2�1� j �0� j

� .

�28�

In fact, the SO�5� matrix product state can be interpreted
as a projected SO�5� VBS state �Fig. 2�. By using two spin-
3/2 fermions, the spin-2 states can be constructed as29,30

�2� = �3
2

†
�1

2

†
�vac�, �− 2� = �

− 1
2

†
�

− 3
2

†
�vac� ,

�1� = �3
2

†
�

− 1
2

†
�vac�, �− 1� = �1

2

†
�

− 3
2

†
�vac� ,

� ��������

� ��������

�

FIG. 1. Kennedy-Tasaki unitary transformation defined in Eq.
�25� for a typical configuration of the spin-1 VBS states. The hidden
antiferromagnetic order is transformed to a dilute ferromagnetic
order.

FIG. 2. �Color online� The schematic of a projected SO�5� VBS
state. Each dot denotes a spin-3/2 fermion. The solid lines represent
SO�5� singlet valence bond and the dashed circles indicate the pro-
jection of two spin-3/2 fermions to form spin-2 site-quintet states.
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�0� =
1
�2

��3
2

†
�

− 3
2

†
+ �1

2

†
�

− 1
2

†
��vac� , �29�

where ��
† creates a fermion with spin components �

= �3 /2, �1 /2. Because only site quintet �S=2� and site sin-
glet �S=0� are allowed for two spin-3/2 fermions on a single
site, an extra projection has to be implemented to remove the
site-singlet state. Owing to SO�5��Sp�4�, there exists an
antisymmetric matrix R= i�1 � �2 with the following prop-
erties:

R2 = − 1, R† = R−1 = RT = − R ,

R�aR−1 = ��a�T, R�abR−1 = − ��ab�T. �30�

Using the R matrix, the SO�5� matrix product state in a
periodic chain can be written in a projected VBS wave func-
tion as

��SO�5�� = �
j

PS=2�j�	�
��

� j,�
† R��� j+1,�

† 
�vac� , �31�

where PS=2�j� is the site-quintet projector and
���� j,�

† R��� j+1,�
† is an SO�5�-invariant valence bond singlet.

For an open boundary condition, the chain is ended with two
nearly free spin-3/2 degrees of freedom leading to 16 degen-
erate ground states. Here we recall that the edge states of the
S=2 VBS states of the AKLT model are spin-1 degrees of
freedom, which are sharply different from our SO�5� matrix
product states.

Similar to the spin-1 VBS state, the SO�5� matrix product
states have an interesting hidden string order. Since the

SO�5� algebra is rank 2, one can classify the states by using
two quantum numbers �weights� corresponding to the mutual
commuting Cartan generators L12 and L34 as

L12�m1,m2� = m1�m1,m2� ,

L34�m1,m2� = m2�m1,m2� . �32�

These states, characterized by the SO�5� weights, are related
to those states denoted by the usual Sz quantum numbers as
follows:

�1,0� = �2�, �− 1,0� = �− 2�, �0,0� = �0� ,

�0,− 1� = �1�, �0,1� = �− 1� . �33�

When we define

�� =
1

2
��3 � i�4�, �� =

1

2
��2 � i�1� , �34�

the local g matrix in Eq. �28� can be rewritten as

gj = �2�+�0,1� j − �2�−�0,− 1� j + �2�+�− 1,0� j + �2�−�1,0� j

+ �5�0,0� j . �35�

By considering the property of Clifford algebra, it can be
found that �1,0� and �−1,0� must appear alternately in the
SO�5� matrix product states despite arbitrary numbers of
�0,0� and �0, �1� between them. At the same time, �0,1� and
�0,−1� also appear alternately with arbitrary numbers of
�0,0� and ��1,0� between them. For example, a typical con-
figuration of the SO�5� matrix product state is

m1: . . . 0 ↑ 0 0 ↓ ↑ 0 0 0 ↓ ↑ 0 ↓ 0 ↑ . . .

m2: . . . ↑ 0 ↓ 0 0 0 ↑ ↓ 0 0 0 ↑ 0 ↓ 0 . . .

where �↑ ,0 ,↓� represent �m�= ��1� , �0� , �−1��. This dilute an-
tiferromagnetic order is in analogy with the spin-1 valence
bond solid �VBS� state in terms of the Sz quantum number,
but here two quantum numbers are associated with the Car-
tan generators L12 and L34. However, such an intriguing fea-
ture is not enjoyed by the S=2 VBS states of Affleck,
Kennedy, Lieb, and Tasaki �AKLT� model. Actually, the
characterization scheme of the VBS states for S�2 remains
a challenging open problem. However, the hidden order of
all SO�2l+1� matrix product states can be fully identified in
a systematic and compact form.

C. Hidden order in the SO(2l+1) matrix product state

Now we are in a position to identify the hidden order in
all the SO�2l+1� matrix product state �14�, which is inspired
from the analysis of SO�5� matrix product state. Since
SO�2l+1� is a rank-l algebra, one can always choose the

mutually commuting Cartan generators as
L12,L34, . . . ,L2l−1,2l�. At each site, the quantum states are
classified by the eigenvalues of these Cartan generators as

L2�−1,2��m�� = m��m��, �m� = 0, � 1� . �36�

Thus, the single-site states are associated with l quantum
numbers m1 , ¯ ,ml� and they are subjected to the constraint

m�m� = 0, �� � �� . �37�

According to Eq. �1�, all the Cartan generators annihilate the
“extra dimension” vector �n2l+1�= �0,0 , . . . ,0�. The other ba-
sis states can be chosen as

�0 . . . ,m� = � 1, . . . 0� =
1
�2

��n2�� � i�n2�−1�� . �38�

From the property of the Clifford algebra, the hidden an-
tiferromagnetic order of the ground state ��� can now be
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identified. In any of the m���=1� l� channel, it can be
shown that �m�� is diluted antiferromagnetically ordered, the
same as for the S=1 VBS state. Namely, the states of m�

=1 and −1 will alternate in space if all the m�=0 states
between them are ignored.

This hidden antiferromagnetic order can also be charac-
terized by nonlocal string order parameters. Similar to the l
=1 case, the string order parameters can be defined as

Oab = lim
�j−i�→�

�Li
ab�

r=i

j−1

exp�iLr
ab�Lj

ab� . �39�

Since the ground state is SO�2l+1� rotationally invariant, the
above nonlocal order parameters should all be equal to each
other. Thus, to determine the value of these parameters, only
O12 needs to be evaluated. One can compute the value of
these string order parameters by the transfer-matrix tech-
niques but there is an alternate intuitive approach. In the L12

channel, the role of the phase factor in Eq. �39� is to correlate
the finite spin-polarized states in the m1 channel at the two
ends of the string. If nonzero m1 takes the same value at the
two ends, then the phase factor is equal to 1. On the other
hand, if nonzero m1 takes two different values at the two
ends, then the phase factor is equal to −1. Thus, the value of
O12 is determined purely by the probability of m1= �1 ap-
pearing at the two ends of the string. It is straightforward to
show that the probability of the states m1= �1 appearing at
one lattice site is 2 / �2l+1� and thus O12=4 / �2l+1�2.

In the SO�2l+1� Lie algebra, �L2�−1,2�, L2�−1,2l+1, and
L2�,2l+1� span an SO�3� subalgebra in which exp�iL2�,2l+1�
plays the role of flipping the quantum number m�. This ex-
ponential operator can flip the quantum numbers of m� with-
out disturbing the quantum states in all other channels. This
indicates that if we take the following nonlocal unitary trans-
formation in the m� channel:

U� = �
j�i

exp�iLj
2�−1,2�Li

2�,2l+1� , �40�

then all the configurations in this channel will be ferromag-
netically ordered. Furthermore, by performing this nonlocal
transformation successively in all the channels,

U = �
�=1

l

U�, �41�

then all the configurations of the ground state will become
ferromagnetically ordered. As an example, Fig. 3 shows how
a typical configuration of the SO�5� matrix product state is
successively changed under this nonlocal unitary transforma-
tion.

By applying the unitary transformation �41� to the Cartan
generators, it can be shown that

ULi
abU−1 = Li

ab exp	i�
j=1

i−1

Lj
ab
 . �42�

Substituting this formula to Eq. �39�, we find that

Oab = lim
�j−i�→�

�Li
abLj

ab�U. �43�

Thus, the nonlocal string order parameters Oab for Cartan
generators become the ordinary two-point correlation func-
tions of local operators after the unitary transformation.

Under the above transformation, the SO�2l+1� symmetry
of the original Hamiltonian is reduced and determined by the
symmetry of the unitary transformation operators. In the m�

channel, it can be shown that the unitary operator U� pos-
sesses only a Z2�Z2 symmetry. Therefore, the Hamiltonian
after the transformation has a �Z2�Z2�l symmetry. This is
the hidden topological symmetry of the Hamiltonian associ-
ated with the hidden order of the original matrix product
state ���. When it is applied to an open chain system, the
hidden �Z2�Z2�l topological symmetry of the Hamiltonian
will be further broken, yielding 2l-free edge states at each
end of the chain. Therefore, the open chain has totally
4l-degenerate ground states, which can be distinguished by
their edge states.

IV. EVEN-n CASE

Let us assume n=2l �l�2�. Using the �2l+1� gamma
matrices, the spinor representation of the SO�2l� algebra can
be constructed by leaving out �2l+1. However, we note that
the resulting 2l-dimensional spinor representation generated
by �a �a=1�2l� is reducible, in contrast to the SO�2l+1�
algebra.24 Since �2l+1 commutes with all the SO�2l� genera-
tors �ab, one can construct the following projection operators
onto two different invariant subspaces:

P� =
1

2
�1 � �2n+1� . �44�

For each lattice site j, we introduce the local g matrix as

gj = �
a=1

2l

�a�na� j , �45�

then the exact matrix product ground states of the Hamil-
tonian �11� for n=2l are given by

� �����

� ��� ���

��

� �

��

��

� �����

� ��� ���

��

� �

��

��

� �����

� ��� ���

��

� �

FIG. 3. �Color online� Changes of a typical configuration of the
SO�5� ground state under the unitary transformation defined by Eq.
�41�. U1 and U2 transform successively all m1 and m2 states to two
diluted ferromagnetic configurations, respectively.
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���� = Tr�P�g1g2 . . . gN�

= �
a1. . .aN

Tr�P��a1 . . . �aN��na1 . . . naN� . �46�

Due to the equation P��a=�aP� �a=1�2l�, we can ob-
serve that the states ���� are dimerized states and are con-
nected to each other by translating one lattice site. Thus,
these two states break translational symmetry while they pre-
serve the SO�2l� rotational symmetry. For an open chain, the
matrix product ground states are 22l−1-fold degenerate when
combining dimerization and edge states.

The static correlation functions can be computed by the
transfer-matrix method as well. We find that the SO�4� ma-
trix product states have only nearest-neighbor correlations
�Li

abLi+1
ab �=−1 /4 and the correlation length is zero. For l�3,

the two-point correlation function �Li
abLj

ab� has an exponen-
tial tail at a large distance, as in Eq. �17�, and the correlation
length is 	=1 / ln� l

l−2 �.
Although these two-point correlation functions of the

SO�2n� matrix product states are short range, there is a hid-
den antiferromagnetic order similar to the SO�2l+1� matrix
product states. Because SO�2l� is a rank-l algebra, the Cartan
generators can be chosen as L12,L34, . . . ,L2l−1,2l�. Thus, the
states can be characterized by the SO�2l� weight using Eq.
�38�. In the SO�2l� case, the only difference is the absence of
the extra dimension vector �0,0 , . . . ,0� annihilated by all
Cartan generators. To measure this hidden order, one can use
the string order parameter in Eq. �39�. A straightforward cal-
culation shows the value of these string order parameters that
are given by

Oab = lim
�j−i�→�

�Li
ab�

r=i

j−1

exp�iLr
ab�Lj

ab� =
1

l2 . �47�

Here we note that translational symmetry breaking distin-
guishes the SO�2l� case from the SO�2l+1� case, while the
latter belongs to the Haldane spin liquid class. This is an
interesting even-odd effect. Furthermore, one may expect
that their low-lying excitations are also very different. The
low-energy excitations in the SO�2l+1� Haldane liquid are
magnons, while the SO�2l� systems are solitonlike excita-
tions connecting the two dimerized states. Although the exact
results of the low-lying excitations do not exist, more evi-
dence comes from the SO�4� case.

A. SO(4) matrix product state: A staggered spin-orbital
crystal

The SO�4� case is somewhat special because it can be
factorized as SO�4��SU�2��SU�2� with C2 � C2 being its
vector representation. Namely, one can consider a spin-
orbital S=T=1 /2 coupled chain or equivalently a spin-1/2
two-leg spin ladder to implement the SO�4� vectors and gen-
erators in Eq. �1�. We find that it is convenient to introduce
the four vector states as

�n1,2� =
e�i/4

�2
��↑ ,↑� � �↓ ,↓�� ,

�n3,4� =
e�i/4

�2
��↓ ,↑� � �↑ ,↓�� , �48�

where the first index in �� ,�� denotes the spin direction while
the second one is the orbital direction. Moreover, the SO�4�
generators are defined by

L12 = − Tz − Sz, L13 = Tx − Sx, L14 = − Ty − Sy ,

L23 = Ty − Sy, L24 = Tx + Sx, L34 = Tz − Sz, �49�

where S� and T� ��=x, y, or z� denote the spin and orbital
degrees of freedom, respectively. Alternately, S� and T� can
be viewed as the spin operators in the upper and lower leg of
a two-chain ladder.

A convenient choice of � matrices for SO�4� spinor rep-
resentation is given by

�1 = �2
� �3, �2 = − �1

� �3,

�3 = �0
� �2, �4 = − �0

� �1. �50�

The invariant subspace projector is P�= �1��5� /2 and �5

=�3 � �3. A little calculation shows that the local g matrix is
given by

gj =�
0 − �↓ ,↑� j i�↓ ,↓� j 0

− �↑ ,↓� j 0 0 − i�↓ ,↓� j

i�↑ ,↑� j 0 0 − �↓ ,↑� j

0 − i�↑ ,↑� j − �↑ ,↓� j 0
� , �51�

up to an unimportant normalization factor.
In this case, the twofold-degenerate ground states have an

intuitive meaning, which becomes clear when the local Hil-
bert space is represented by a Schwinger-boson Fock space
as �� ,��=a�

†b�
†�vac�. Here a�

† and b�
† create a state with spin

and orbital directions � and �, respectively. Using these
Schwinger bosons, we find that the state ��+� in Eq. �46� can
be written as

��+� = �
i=1

N/2

�b2i−1,↑
† b2i,↓

† − b2i−1,↓
† b2i,↑

† �

��a2i,↑
† a2i+1,↓

† − a2i,↓
† a2i+1,↑

† ��vac� , �52�

and the interchange of a† and b† yields ��−�. These staggered
spin-orbital crystal states are first found by Kolezhuk and
Mikeska.31 The picture of these states is displayed in Figs.
4�a� and 4�b�. Obviously, the two-point correlation functions
are nonvanishing only between nearest-neighbor sites. For
this spin-orbital SO�4� system, the string order parameters in
Eq. �47� can be written as

���

���

FIG. 4. �Color online� The schematic of the twofold-degenerate
staggered spin-orbital crystal states �a� ��+� and �b� ��−�.
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lim
�j−i�→�

��Si
� � Ti

���
r=i

j−1

ei�Sr
��Tr

���Sj
� � Tj

��� =
1

4
, �53�

where �=x, y, or z. In the studies of two-leg spin ladders,
these types of string order parameters were introduced to
divide the topologically distinct gapped spin liquid states.32

The fact that such two dimerized states are exact ground
states of the projector Hamiltonian �11� can be easily visual-
ized when writing the projectors of the three SO�4� channels
in Eq. �10� as

P1�i, j� = PS=0�i, j�PT=0�i, j� ,

P6�i, j� = PS=0�i, j�PT=1�i, j� + PS=1�i, j�PT=0�i, j� ,

P9�i, j� = PS=1�i, j�PT=1�i, j� , �54�

where PS=0�i , j�= 1
4 −Si ·S j and PS=1�i , j�= 3

4 +Si ·S j are bond
total spin projectors. Once the spin and orbital singlets are
formed between nearest-neighbor sites in a staggered pattern,
the SO�4�-symmetric projector Hamiltonian,

HSO�4� = �
i

P9�i,i + 1� = �
i
	Si · Si+1 +

3

4

	Ti · Ti+1 +

3

4

 ,

�55�

always annihilate such a spin-orbital crystal state.

V. SO(n) BILINEAR-BIQUADRATIC MODEL

As already mentioned, HSO�n� is a bilinear-biquadratic
Hamiltonian in terms of the SO�n� generators. More gener-
ally, we can also introduce a one-parameter family of the
SO�n� symmetric bilinear-biquadratic model,

Hbb = �
i
�cos ��

a�b

Li
abLi+1

ab + sin �	�
a�b

Li
abLi+1

ab 
2� ,

�56�

which is an extension of the familiar spin-1 bilinear-
biquadratic model. The absence of the higher-order terms
follows from the fact that such terms can be expressed via
the lower-order terms by means of Eq. �10�. To sketch the
properties of this bilinear-biquadratic model, we need to
identify several special integrable points. Let us introduce a
slave boson representation,

�na� = da
†�vac� , �57�

which yields a constraint �a=1
n da

†da=1. Using the slave
bosons, the SO�n� generators can be written as Lab= i�da

†db
−db

†da�, and the SO�n�-singlet bond projector in Eq. �10� is
given by

P1�i, j� =
1

n
�
ab

dia
† dja

† djbdib. �58�

Additionally, the SU�n�-invariant permutation operator is ex-
pressed as

Q�i, j� = �
ab

dia
† dibdjb

† dja. �59�

Using the permutation operator and the singlet projector, we
can express the bilinear-biquadratic Hamiltonian �56� as

Hbb = �
i

cos �Q�i,i + 1�

+ n��n − 2�sin � − cos ��P1�i,i + 1�� �60�

up to a constant. Several special points can be identified as
follows:

�1� �=tan−1 1
n−2 and tan−1 1

n−2 −; the Hamiltonian �56� re-
duces to a sum of nearest-neighbor permutation operators,
thus, it has an enhanced SU�n� symmetry. In this case, the
transformation on each lattice site is in the SU�n� fundamen-
tal representation. For �=tan−1 1

n−2 , this is the Uimin-Lai-
Sutherland �ULS� model,17 which can be solved by Bethe-
ansatz method. It is known that there are gapless excitations
above the ground states and the effective low-energy field
theory is described by an SU�n�1 Wess-Zumino-Witten
model.33

�2� �= �

2 ; the Hamiltonian �56� reduces to a sum of

nearest-neighbor singlet projectors and also has an SU�n�
symmetry. However, the transformations are in the SU�n�
fundamental and its conjugate representations on the even
and odd numbers of lattice sites, respectively. For �
=− 

2 , a mapping to the n2-state quantum Potts model allows
the model to be solved exactly,34–36 and the ground states are
dimerized states with a finite-energy gap.

�3� �=tan−1 �n−4� / �n−2�2; the Hamiltonian �56� was ex-
actly solved by Reshetikhin37 via quantum inverse scattering
method, which also exhibited gapless excitations. For n=3,
this point corresponds to the spin-1 Takhatajan-Babujian
model,38 which is the quantum critical point between
Haldane gap phase and dimerized phase. For n=4, the Resh-
etikhin point yields the SO�4� Heisenberg model, which is
equivalent to two decoupled spin-1/2 Heisenberg antiferro-
magnetic spin chains.

�4� �=tan−1 1
n ; the ground states of the model Hamiltonian

�56� are just the matrix product states considered in Secs. III
and IV. For an odd n, the ground state is a unique Haldane
liquid state. For an even n, the ground states are twofold-
degenerate dimerized states and are referred to non-Haldane
liquid states.

Therefore, these rigorous results suggest that an energy
gap develops for the model �56� in the finite parameter re-
gion

tan−1 n − 4

�n − 2�2 � � � tan−1 1

n − 2
, �61�

which always includes our matrix product ground-state point
�=tan−1 1

n . The gap formation in this region is quite subtle. In
the point of view of conformal field theory, the SU�n� ULS
and the SO�n� Reshetikhin points are both conformal invari-
ant and are characterized by two effective-field theories with
different central charges. If so, there will be no renormaliza
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tion flow from the SO�n� Reshetikhin point to the
SU�n�-symmetric point according to Zamolodchikov’s c
theorem,39 and an energy gap must be generated between
these two conformal invariant points. It was known that the
conformal field theory for the ULS point is an SU�n�1 Wess-
Zumino-Witten model with central charge c=n−1. The con-
formal field theory description for the SO�n� Reshetikhin
point is an SO�n�1 Wess-Zumino-Witten model with central
charge c=n /2. In particular, the SO�3� Takhatajan-Babujian
model is known to have a central charge c=3 /2 and the
SO�4� Heisenberg model �two decoupled spin-1/2 Heisen-
berg antiferromagnetic spin chains� has a central charge c
=2.

Toward the odd n=2l+1 case, Itoi and Kato40 found that
a marginally relevant perturbation around the ULS point de-
velops a Haldane gap for �� tan−1 1

n−2 , while the region �

 tan−1 1

n−2 near the ULS point is massless. However, the
even n case was extensively studied for n=4, which corre-
sponds to an SO�4� spin-orbital coupled system.41–45 These
results reveal that there is a dimerized non-Haldane liquid
phase with an energy gap between the SU�4�-symmetric
point and the SO�4� Heisenberg point. In the non-Haldane
liquid state, magnon excitations are incoherent and the low-
energy excitations are a pair of solitons connecting two spon-
taneously dimerized ground states. It is thus expected that
these SO�n� symmetric models also show such an interesting
even-odd effect not only in the ground states but also in the
low-energy excitations. For n=2l+1, the system is in a
Haldane gap liquid phase with magnon excitations. For n
=2l, the elementary excitations are solitons connecting the
degenerate ground states.

Following the exact results, the main phase diagrams of
SO�n� bilinear-biquadratic model for n=3,4 ,5 are displayed
in Fig. 5. However, the SO�n� antiferromagnetic Heisenberg
model deserves more attention, corresponding to the bilinear-
biquadratic model �56� with a pure bilinear interaction for
�=0. When n=3, it is just the quantum spin-1 antiferromag-
netic Heisenberg model, which is in the Haldane gap region.
When n=4, the SO�4� Heisenberg model is equivalent to two
decoupled spin-1/2 antiferromagnetic chains, which have
unique disordered ground states with power-law decay spin
correlations. However, when n=5, we find that the SO�5�
antiferromagnetic Heisenberg model is not included in the
Haldane gap region. Therefore, it is interesting to ask what
are the ground states of the SO�n� antiferromagnetic models
for n�5. Based on a generalized Lieb-Schultz-Mattis theo-
rem, Li46 studied SO�n� antiferromagnetic models for n
=4,5 ,6. He found that the SO�4� Heisenberg model is gap-
less, while SO�5� and SO�6� Heisenberg models are sus-
pected to have a gap. Together with our results, we predict
that the SO�n� Heisenberg model for n�5 belongs to the
dimerized phase with a finite-energy gap.

VI. CONCLUSION

In conclusion, we have introduced a class of SO�n� sym-
metric spin chain Hamiltonians with nearest-neighbor inter-
actions, whose exact ground states are two different SO�n�
symmetric matrix product states depending on the parity of
n.

For an odd n=2l+1, a periodic chain has a unique ground
state, which preserves an SO�2l+1� rotational and transla-
tional symmetries. The SO�2l+1� symmetric spin chains
with different l are directly related to quantum integer-spin
chains belonging to the Haldane gap phase with a hidden
antiferromagnetic order characterized by nonlocal string or-
der parameters. The hidden �Z2�Z2�l symmetry responsible
for the hidden order has been found by applying a unitary
transformation to the model Hamiltonian. The Haldane gap
and 4l degenerate ground states in an open chain are natural
consequences of this hidden symmetry breaking.

For an even n=2l, a periodic chain has a twofold-
degenerate dimerized ground state, which preserves SO�2l�
symmetry but breaks translational symmetry. These SO�2l�
matrix product states with different l are non-Haldane liquid
states, which have soliton excitations connecting the two de-
generate ground states. However, these SO�2l� matrix prod-
uct states also contain a hidden antiferromagnetic order char-
acterized by nonlocal string order parameters.

Finally, a generalized SO�n� symmetric bilinear-
biquadratic model family has been discussed and the ground-
state phase diagrams are sketched based on some known ex-
act results. One of the important conclusions is that the
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FIG. 5. The ground-state phase diagrams of the �a� SO�3�, �b�
SO�4�, and �c� SO�5� symmetric bilinear-biquadratic spin chains.
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ground state of the SO�n� symmetric Heisenberg antiferro-
magnetic spin model for n�5 is predicted to be in a twofold-
degenerate dimerized state. Further investigations on this are
certainly required.
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